
B
The NetWare Debugger

Introduction . B-2

Invoking the Debugger . B-3

Debug Commands . B-4
Help . B-4
"." Commands . B-4
Breakpoints . B-4

Breakpoint Conditions . B-4
Memory . B-6
Register Manipulation . B-8
Input/Output . B-9
Miscellaneous . B-10

Debug Expressions . B-12
Grouping Operators . B-13
Conditional Evaluation . B-13

Symbolic Information . B-14

Version 1.00 B – 1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Introduction

The NetWare operating system includes an internal assembly language
oriented debug utility. The NetWare debugger allows a developer to
perform the commands summarized in the following table. These
commands and examples of their use are explained in the remainder of
this appendix.

.A displays the abend or break reason

B displays all current breakpoints

BC number clears the specified breakpoint

BCA clears all breakpoints

B = addr [condition] sets an execution breakpoint at address

BW = addr [condition] sets a write breakpoint at address

BR = addr [condition] sets a read/write breakpoint at address

C addr changes memory in interactive mode

C addr=number(s) changes memory to the specified number(s)

C addr="text" changes memory to the specified text ASCII values

.C does a diagnostic memory dump to diskette

D addr [length] dumps memory for optional length

DL[+linkoffset] addr [length] dumps memory starting at address for optional length and traverses a linked list

(default link field offset is 0)

REG=value changes the specified register to the new value REG is EAX, EBX, ECX, EDX,

ESI, EDI, ESP, EBP, EIP, or EFL

F Flag=value changes the FLAG bit to value (0 or 1) where FLAG is CF, AF, ZF, SF, IF, TF,

PF, DF or OF

G [break addr(s)] begins execution at current EIP and set optional temporary breakpoints(s)

H displays basic debugger command help screen

HB displays breakpoint help screen

HE displays expression help screen

.H displays the dot help screen

I [B;W;D] Port inputs byte, word, or dword from Port (default is byte)

M addr [L length] pattern searches memory for pattern (L length is optional and if not specified, the rest of

memory will be searched)

.M displays loaded module names and addresses

N symbolName addr defines a new symbol name at address

N -symbolName removes defined symbol name

N-- removes all defined symbols

O [B;W;D] Port=value outputs byte, word, or dword value to PORT

P proceeds over the next instruction

.P displays all process names and addresses

.P addr displays <address> as a process control block

Q quits and exits back to DOS

R displays registers and flags

.R displays the running process control block

S single-steps

.S displays all screen names and addresses

.S addr displays <address> as a screen structure

T trace (single-step)

U addr [count] unassembles count instructions starting at address

V views server screens

.V displays server version

Z expression evaluates the expression (See HE help screen)

? [addr] If symbolic information has been loaded, the closest symbols to address (default

is EIP) are displayed

B – 2 Version 1.00

Appendix B • The NetWare Debugger

Invoking the Debugger

There are four methods available to invoke the debugger.

From the server console keyboard

1) Press the Ctrl - Alt - LeftShift - RightShift - Esc key combination
simultaneously at the server console keyboard. This will not
work if the server is hung in an infinite loop with interrupts
disabled or if the server console is secured.

2) After the driver abends or GPIs the server, enter the key
combination described in method 1 above or type 386debug.
The characters do not echo to the screen, but the debugger
prompt (#) appears.

From a driver or NLM

3) Include an INT 3 in the desired code segment where the break-
point is to be executed. Programs written in C using CLIB can
call the Breakpoint () function. Programs written in C using the
OS library can call the EnterDebugger () function.

Manually

4) Generate a non-maskable interrupt with an NMI board. This
will cause the server to Abend, after which method 2 above may
be performed. This method may be required if the software
being debugged is in an infinite loop with interrupts disabled.

When the debugger is entered, it will display the location at which the
trap occurred, the cause of the trap into the debugger, and the
contents of the general registers and flags.

Once you have entered the debugger, the address and length of the
data and code segments of all loaded modules may be found using the
.m command. Breakpoints can then be set in the driver code using
addresses in the map file relative to the addresses dumped by the
debugger.

The available debugger commands are explained on the following pages
of this appendix.

Version 1.00 B – 3

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Debug Commands

Help

The debugger’s help commands are:

H display help for general commands
HB display help for breakpoints

HE display help for expressions

.H display help for "." commands

"." Commands

.a display the Abend or break reason

.c do a diagnostic memory dump to diskette

.h display help for "." commands.

.m display loaded module names and addresses.

.p display all process names and addresses.

.p addr display address as a process control block

.r display running process control block.

.s display all screen names and addresses.

.s addr display all screen names and addresses.

.v display server version

Breakpoints

There are four breakpoint registers, allowing a maximum of four
breakpoints to be set at the same time. The breakpoints can be
permanent breakpoints, set using the B commands (described in this
section), or temporary breakpoints set using the G command. In
addition, the P command will also set a temporary breakpoint if the
current instruction cannot be single stepped. This section consists of
descriptions and examples for setting permanent breakpoints.
Temporary breakpoints using the G and P commands are described
later in this chapter.

Breakpoint Conditions

Several breakpoint commands include an optional [condition] argument.
A breakpoint condition is any expression to be evaluated when the
break occurs. If the condition is false, execution is resumed
immediately without entering the interactive debugger.

B – 4 Version 1.00

Appendix B • The NetWare Debugger

B

Display all breakpoints that are currently set.

B

Breakpoint 0 write byte at FFF65623
Breakpoint 1 read or write byte at 000653BA
Breakpoint 2 execute at FFF06BA3

BC number

Clear the breakpoint specified by number.

BC 2

Breakpoint cleared

BCA

Clear all breakpoints.

BCA

All breakpoints cleared

B = address [condition]

Set an Execution Breakpoint at the address specified when the
indicated [condition] is true.

B = FFF8765A

Set as breakpoint 0

BW = address [condition]

Set a Write Breakpoint at the address specified when the indicated
[condition] is true.

BW = FFF665AB

Set as breakpoint 1

Version 1.00 B – 5

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

BR = address [condition]

Set a Read/Write Breakpoint at the address specified when the
indicated [condition] is true.

BR = 0065ACF3

Set as breakpoint 2

Memory

This section describes how to change or display memory contents.

C address

Interactively change the contents of memory location address.
(To end interactive mode type a period.)

C FFF6432A

FFF6432A (00)=33
FFF6432B (34)=C8
FFF6432C (5A)=.

C address = number(s)

Change the memory contents beginning at address to the specified
number(s).

C FFF534C5 = 00,00,12,5A,78

Change successfully completed

C address = "text string"

Change the memory contents beginning at address to the specified
text string.

C FFF60DB3 = "This is a string."

Change successfully completed

B – 6 Version 1.00

Appendix B • The NetWare Debugger

D address [count]

Dumps the contents of memory, starting at address, for [count] number
of bytes. The address and count are hexadecimal numbers. If the count
is not specified, one page (100h bytes) will be display. The D command
can be repeated by pressing ↵ Enter at the # prompt.

D FFF7765E

FFF7765E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7766E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7767E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7768E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7769E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776AE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776BE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776CE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776DE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776EE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776FE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7770E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7771E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7772E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7773E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7774E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

D FFF7765E 10

FFF7765E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

M address [L length] bytepattern

Search memory for a bytepattern match, starting at location address
and continuing until [L length] is reached. If a match is found,
128 bytes (beginning with the pattern) are displayed. The M command
can be repeated by pressing ↵ Enter at the # prompt.

M FFF77F00 54 48 45 52

FFF77F1C 54 48 45 52 4E 45 54 5F - 49 49 00 90 00 00 00 00 THERNET_II......
FFF77F2C 00 00 00 00 00 00 90 6B - F7 FF 00 00 00 00 00 00kw........
FFF77F3C 48 61 72 64 77 61 72 65 - 44 72 69 76 65 72 4D 4C HardwareDriverML
FFF77F4C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF77F5C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF77F6C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF77F7C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF77F8C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

M FFF77F5C L1F 54 48

Match not found

Version 1.00 B – 7

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Register Manipulation

This section describes the debugger commands used on the
microprocessor’s general and flag registers.

R

Display the EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, EIP, and Flag
Registers.

R

EAX=99999999 EBX=00005455 ECX=78787878 EDX=00060544
ESI=00000000 EDI=80868086 EBP=00000000 ESP=FFF67876
EIP=FFF56784 FLAGS=00010002

register = value

Change the specified register to the new value. The command is
effective with EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, and EIP.

EAX=8099ACB3

Register changed

F flag = value

Change the specified flag to the new value (0 or 1). The command is
effective with the CF, AF, ZF, SF, IF, TF, PF, DF, and OF flags.

F PF=0

Flag changed

B – 8 Version 1.00

Appendix B • The NetWare Debugger

Input/Output

This section describes the debugger’s I/O commands.

I[B,W,D] port

Input a byte, word, or double word from port.

I 25A

Port (25A)=F8

IB 25A

Port (25A)=F8

IW 1B3

Port (1B3)=D3FF

O[B,W,D] port = value

Output a byte, word, or double word value to port.

O 25B=7D

Output completed

OW 18E=3C0F

Output completed

Version 1.00 B – 9

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Miscellaneous

This section consists of descriptions of the remaining debugger
commands.

G [address(es)]

Begin execution (Go) from current position and set temporary
breakpoint [address(es)].

G FFF56784

Break at FFF56784 because of go breakpoint
EAX=99999999 EBX=00005455 ECX=78787878 EDX=00060544
ESI=00000000 EDI=80868086 EBP=00000000 ESP=FFF67876
EIP=FFF56784 FLAGS=00010002

FFF56784 BB30CE0500 mov ebx, 0005CE30

N symbolname value

Define a new symbol with a value.

N thissym 0F0F

P

Proceed over next instruction. This command is similar to the "Trace"
or "Single Step" command but it will not single step loops or calls. The
P command can be repeated by pressing ↵ Enter at the # prompt.

Q

Quit and return to DOS.

T or S

Trace or Single Step through the program. The T or S commands can
be repeated by pressing ↵ Enter at the # prompt.

B – 10 Version 1.00

Appendix B • The NetWare Debugger

U address [count]

Unassemble count instructions from address. The U command can be
repeated by pressing ↵ Enter at the # prompt.

u FFF87885 2

FFF87885 0000 add [eax], al
FFF87887 0000 add [eax], al

V

View the screens (will step through the screens sequentially).

Z expression

Evaluate the expression. (calculator)

z 7+8

Evaluates to: F

Version 1.00 B – 11

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Debug Expressions

All numbers in debug expressions are entered and shown in hex format.
In addition to numbers, the following registers, flags, and operators can
be used in expressions and breakpoint conditions:

Registers: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, EIP

Flags: FLCF, FLAF, FLZF, FLSF, FLIF, FLTF, FLPF, FLDP, FLOF

Operators and precedence:

Symbol Description Precedence

!

-

~

*

/

%

+

-

>>

<<

>

<

>=

<=

==

!=

&

^

|

&&

||

logical not

2’s compliment

1’s compliment

multiply

divide

mod

addition

subtraction

bit shift right

bit shift left

greater than

less than

greater than or equal to

less than or equal to

equal to

not equal to

bitwise AND

bitwise XOR

bitwise OR

logical AND

logical OR

1

1

1

2

2

2

3

3

4

4

5

5

5

5

6

6

7

8

9

10

11

B – 12 Version 1.00

Appendix B • The NetWare Debugger

Grouping Operators

The operators (), [], and { } have a precedence of 0. These grouping
operators can be nested in any combination.

(expression)
Causes the expression to be evaluated at a higher precedence.

[size expression]
Causes the expression to be evaluated at a higher precedence and then
uses the value of the expression as a memory address. The bracketed
expression is replaced with the byte, word, or double word at that
address. "Size" is a data size specifier of the type B, W, or D.

{size expression}
Causes the expression to be evaluated at a higher precedence and then
uses the value of the expression as a port address. The bracketed
expression is replaced with the byte, word, or double word input from
the port. "Size" is a data size specifier of the type B, W, or D.

Conditional Evaluation

expression1 ? expression2 , expression3

If expression1 is true, then the result is the value of expression2;
otherwise, the result is the value of expression3.

Version 1.00 B – 13

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Symbolic Information

Symbolic information may be included in a driver file that can be used
to access routines or variables by name while in the NetWare 386
debugger. To access symbolic information, the following steps must be
taken:

1) Declare public all desired symbols in the driver.
2) Include the keyword debug in the driver’s linker definition file.

Each of these symbol names (the debugger is case-sensitive) can now be
used in the same way the address they represent would be used. For
example, at the debug prompt it is possible to display memory
beginning at the address of the label AdapterBdStruct by entering:

#d AdapterBdStruct

Symbols may be dynamically defined by the debugger. If it is necessary
to dynamically define more than 10 symbols the server must be loaded
with the -y option.

Note: Debugging information must be removed before releasing the
driver. Including the debug keyword in the definition file will cause a
message to be displayed on the console when the driver is loaded,
indicating that it contains debug information.

B – 14 Version 1.00

